Cancer outlier differential gene expression detection.

نویسنده

  • Baolin Wu
چکیده

We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated from the t-statistic, the most commonly used differential gene expression detection method. Using real and simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often has more detection power and smaller false discovery rates. Supplementary information can be found at http://www.biostat.umn.edu/~baolin/research/ort.html.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LSOSS: Detection of Cancer Outlier Differential Gene Expression

Detection of differential gene expression using microarray technology has received considerable interest in cancer research studies. Recently, many researchers discovered that oncogenes may be activated in some but not all samples in a given disease group. The existing statistical tools for detecting differentially expressed genes in a subset of the disease group mainly include cancer outlier p...

متن کامل

MOST: detecting cancer differential gene expression.

We propose a new statistics for the detection of differentially expressed genes when the genes are activated only in a subset of the samples. Statistics designed for this unconventional circumstance has proved to be valuable for most cancer studies, where oncogenes are activated for a small number of disease samples. Previous efforts made in this direction include cancer outlier profile analysi...

متن کامل

Outlier sums for differential gene expression analysis.

We propose a method for detecting genes that, in a disease group, exhibit unusually high gene expression in some but not all samples. This can be particularly useful in cancer studies, where mutations that can amplify or turn off gene expression often occur in only a minority of samples. In real and simulated examples, the new method often exhibits lower false discovery rates than simple t-stat...

متن کامل

Expression Analysis of RNA-Binding Motif Gene on Y Chromosome (RBMY) Protein Isoforms in Testis Tissue and a Testicular Germ Cell Cancer-Derived Cell Line (NT2)

a key factor in spermatogenesis and disorders associated with this protein have been recognized to be related to male infertility. Although it was suggested that this protein could have different functions during germ cell development, no studies have been conducted to uncover the mechanism of this potential function yet. Here, we analyzed the expression pattern of RBMY protein isoforms in test...

متن کامل

Outlier Analysis Defines Zinc Finger Gene Family DNA Methylation in Tumors and Saliva of Head and Neck Cancer Patients

Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2007